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Fluids adsorbed near surfaces, near macromolecules, and in porous materials are
inhomogeneous, exhibiting spatially varying density distributions. Thisinhomogene-
ity in the fluid plays an important role in controlling a wide variety of complex phys-
ical phenomena including wetting, self-assembly, corrosion, and molecular recogni-
tion. One of the key methods for studying the properties of inhomogeneous fluids in
simple geometries has been density functional theory (DFT). However, there has been
a conspicuous lack of calculations in complex two- and three-dimensional geome-
tries. The computational difficulty arises from the need to perform nested integrals
that are due to nonlocal terms in the free energy functional. These integral equations
are expensive both in evaluation time and in memory requirements; however, the
expense can be mitigated by intelligent algorithms and the use of parallel computers.
This paper details our efforts to develop efficient numerical algorithms so that nolocal
DFT calculations in complex geometries that require two or three dimensions can
be performed. The success of this implementation will enable the study of solva-
tion effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in
colloidal suspensions. @ 2000 Academic Press

Key Wordsinhomogeneous fluids; solvation; density functional theory; molecular
theory; parallelization; finite element.

1. INTRODUCTION

Fluids near surfaces or macromolecules have properties (e.g., viscosity and density
are markedly different from the bulk properties of these fluids. Predicting the struct
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of fluids in confined spaces is ultimately critical for calculating adsorption in, solvatic
forces on, and wetting of complex surfaces, macromolecules, and porous materials.
structure of these fluids may be found either with grand canonical Monte Carlo (GCNV
simulations [1] or molecular dynamics simulations or with molecular theories such as
density functional theory (DFT) discussed in this paper [2].

In DFT for inhomogeneous fluids, the surface (or macromolecule) generates an exte
field in which the fluid molecules equilibrate. Many formulations for DFTs have bee
exploredinthe pasttwo decades [2]. The simplest of these are local DFTs. In these case
free energy density is assumed to depend only on the density at one point in the fluid. L
DFTs overestimate the energy penalties associated with rapidly varying density profiles
as a result are inadequate for describing density distributions in fluids near solid interfa
The alternative is a nonlocal approach that defines the free energy density to be a fun
of a weighted average of all the densities in a nearby region of the fluid.

Unlike DFT for electronic structure calculations, there is no exact Hamiltonian to descr
inhomogeneous fluids. Therefore nonlocal DFTs were initially developed on a somew
ad hoc basis with the goal of reproducing GCMC simulations. The most widely appli
of these ad hoc approaches was the Tarazona functional [3]. While the Tarazona appt
is successful in treating both hard sphere and Lennard—Jones fluids near surfaces
difficult to extend to multicomponent systems with particles of unlike size. More recent
the development of a fundamental measures DFT by Rosenfeld [4] and its applica
to inhomogeneous fluids by Kierlik and Rosinberg [5] have allowed for straightforwa
extension of DFT approaches to multicomponent systems.

Applications of the Tarazona and, to a lesser extent, the Rosenfeld functionals F
until recently [6, 7] been limited to problems where the density profiles are uniform
two dimensions (2D). The result is a 1D numerical problem that must be solved. Exam
include adsorption [8] and capillary condensation [9] in slit-like pores, cylindrical pores [ 1(
and spherical cavities [11]; wetting at homogeneous planar interfaces [12]; and nucleatic
droplets [13]. Estimation of solvation forces between rough and curved interfaces, as we
adsorption in pore networks, has been obtained with superposition of 1D solutions [14—

While 1D calculations have provided a great deal of insight into the underlying phys
controlling inhomogeneous fluids at homogeneous interfaces, these 1D calculations
ultimately limited in probing the behavior of inhomogeneous fluids at heterogeneous (ei
in geometry or chemistry) interfaces. A great deal of interfacial physics and chemistry fr
self-assembly to corrosion to molecular recognition depends on surface heterogene
Therefore, extending DFT capabilities to 2D and 3D is a needed development.

To further motivate the discussion, an example of a density profile (calculated using the
gorithms described in this paper) in a fluid near a chemically heterogeneous surface is st
in Fig. 1. In this case, the surface was composed of alternating hydrophilic and hydroph
stripes. The hydrophilic portion of the surface is located/at =0 and O< y/o <5, and
the hydrophobic portion of the surface is foundkgbs =0 and 5< y/o < 10, whereo is
the diameter of a fluid particle. The solution domain has periodic boundarigsird a
bulk boundary atx/oc =10. Figure 1 demonstrates the complexity in the fluid structur
near this interface with rapid variations in density both parallel and perpendicular to
surface. A full analysis of wetting and phase transitions in fluids near this type of chemic:
heterogeneous surface may be found elsewhere [17-20].

The remainder of this paper is focused on presenting our numerical implementatio
DFT for 2D and 3D applications. The details of our algorithms and numerical methods
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FIG. 1. The reduced number densipy3, as a function of positiorx(andy in units ofo’) near a surface that
is chemically heterogeneous.

presented and applied to the simplest fluid model, a single-component hard sphere
We defer the discussion of multicomponent systems, Lennard—Jones fluids, and che
systems to future papers. The outline of this paper is as follows. DFT is briefly reviev
in Section 2, our basic numerical approach is outlined in Section 3, a variety of algorith
for improved performance are presented in Section 4, and parallelization is discusse
Section 5. A detailed discussion of precision and solvated polymers may be found
companion paper (Part I1) [21].

2. THEORY

Density functional theory is a thermodynamic theory in which the free energy of t
system is minimized with respect to the fluid density distributjofr). The density distri-
bution is inhomogeneous due to the surfaces or macromolecules in the system which
an external fieldvV®, on the fluid molecules. The ensemble in which DFT calculatior
are most often performed is the grand canonical ensemble (constant chemical pgtenti
volume, V; and temperaturel ). The grand canonical ensemble is open with respect
material exchange and so is suitable for any confined fluid that interacts with a bulk flu

The grand free energf is @ = F — G, whereF is the Helmholtz free energg = uN
is the Gibbs free energy, all= [ drp(r) is the number of fluid particles in the volume of
interest. The equilibrium density distribution is the one that minimizes the free energy

o2
<8p<r)>w =0 W
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The specific definition of2 depends on the fluid model of interest. We restrict our discussic
to hard sphere fluids.
Hard sphere fluids are defined by the pair interaction potential

o0 if r12=|r2—r1| <o,
0 otherwise

u(ry) = { (2

whereo is the diameter of a fluid particle.
Separating the Helmholtz free energy into idég|, and excess hard spheFgg, contri-
butions, the grand potential is

2= Fat P [ A pOIV0) - 1l 3)
where
Fa=kT [ dr p0)iin(a%(r) - 1), (4)
and
Fra= [ dr @(5, ) (5)

The parametersin Eq. (4) are the deBroglie wavelengjlaqd the Boltzmann constarhd)(
The hard sphere contribution is written in terms of a free energy dedsity)at depends
on thenonlocaldensities,p. These nonlocal densities are defined by the weight function
w(y)’ as

Py (1) =/dr’p(r’)w<”(r —r). (6)
The six weight functions in Rosenfeld’s theory [4] are

w®r) =00 — R
w?(r) = 4 RwP(r) = 4rR?w @) = 8(r — R
wV2(r) = dar RwVY(r) = (r/r)s(r — R), 7)

wherer indicates a vector and= |r|. These weight functions are based on the geometry
the fluid particles a8 is the step functionj is the Dirac delta function, an@ is the radius
of a particle. Thus the integrals over weight functions are related to the volume, surf
area, and radius of the particle. The hard sphere free energy density is a sum of scala
vector contributions®p = &5 + &, with

pp2 1 p3
1—p3 247 (1— p3)?

_pvitpvz 1 pa(pya - pv2)
1-p3 8t (1—p3)?

and

®s = —poIn(1— p3) +

o, = (8)
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Performing the functional minimization in Eq. (1) on Eqg. (3) yields the Euler—Lagran
(EL) equation

1 =KT In(p(r)) + V() + /dr’(Z aa—?w(”)(r - r’)), 9)
14

Py

which must be solved at every point in the mesh.

Note that Eq. (9) includes a volumetric integral, whose integrand is a nonlinear funct
of the p functions, which are themselves integrals over the unknown density distributi
The resulting nested integrals present the main computational difficulty in solving DFT

The computational domain in any calculation is rectangular with edges of lepgthy,
andL . There are four types of boundary conditions that may be applied at the edges o
computational domain. In the case of bulk boundaries, the fluid is assumed to be unif
with p = pp beyond the computational domain. For wall boundaries, the fluid densities
o = 0 beyond the computational domain; for periodic boundaries, the fluid densities bey
the edge of the domain (assuming the periodic boundary is applied indhection) are

p(X+ Lx,Y,2) ifx <0
p(X.y.2) = { i : (10)
IO(X_LX?yaZ) X > LX
Finally, for reflective boundaries in thedirection, the boundary conditions are
p(X],y,2) if x<0
p(X,Y,2) = { : (11)
pR2Lyx —X,Y,2) X > Ly

3. NUMERICAL METHODS

3.1. Mesh and Quadrature

A collocation approach is used to determine the density distribution that satisfies
EL equation in the neighborhood of surfaces. The problem geometry is represented
mesh. The densities at the nodes of the mesh are unknowns, and the density distribut
assumed to vary linearly between the nodes. The EL equations are required to be sat
at the nodes.

The main computational complexity is computing the integrals of a functioner the
weight functions in Eq. (7), whether it is to evaluate thiunctions (f = p) or the integral
term in the EL equationf{=93®/dp). The integrals are computed numerically, using
precalculated numerical integration stencil,

N(y)

sten

/ FaYw® @ —rdr' ~ > C e f;, (12)
i-1

where Né{’e)n is the total number of points in theth weight function stencil. The weight

functions are split into their prefactors (e.§,”’ =r /(4w Rr) for wV?) and the funda-
mental®é ands weight functionsw. For 1D and 2D problems, the 3®andé functions
are collapsed analytically into integrals along a line or on a disk, respectively, before
numerical integration is performed. For the 2D stencils, we integrate Eq. (12) over
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dimension ¢') analytically to get

ZR/ CY X, y)V1—-x2—y20(R—+/x2+y?2)dxdy (13)

for integrations over the 3B function stencils, and

2//(:@)1”’(# O(R— /X2 + y?)dxdy (14)

_ X/2 _ y/2

for integrations over the 3B function stencils. In 1D, Eq. (12) is integrated over two
dimensions¥, y’) to obtain

TR? /cW)f(x’)(l—x’z)e(R— IX']) dx’ (15)
for integrations over the 3B function stencils, and
ZnR/C(V)f(x/) (R — |X']) dX (16)

for integrations over the 3D function stencils. It was found that very accurate stencil
are needed to obtain accurate density profiles with the rapid variations as shown in Fi
So, all integration stencilswi(y), are calculated numerically by finding the contribution
to each node from each element. In elements that fall entirely within the sphere (3
disk (2D), or endpoints (1D), the integrand is smooth, and a simple Gauss quadratu
used. In elements that straddle the sphere (disk, endpoints), the integrand is discontini
so a simple midpoint rule is used with numerous equally spaced (and equally weigh
guadrature points.

For an arbitrary nonuniform mesh, the calculation and storage of these stencils woul
prohibitively expensive. Instead, we restrict our mesh to be a rectangular, Cartesian r
with constant node spacingsx in each direction. The rectangular mesh allows each noc
to be identified with ani( j, k) integer location. With the uniform mesh, the stencils can b
calculated once and stored in a list that contains the offseits jnk) space and the weights
a)i(”. The stencil calculation is thereby reduced to a quick preprocessing step. The n
drawback of requiring a rectangular mesh is that surfaces with boundaries that do not ¢
with the Cartesian axes must be represented by staircased boundaries. The conseqt
of surface staircasing are considered in Part II.

The numbers of quadrature points in thandé function stencils for 1D, 2D, and 3D
calculations on meshes witkix = 0.10 andAx = 0.05¢ are shown in Table I. The number
of stencil points in thel and 6 function are identical in 1D and 2D due to analytical
integration over dimensions with uniform densities.

For mesh nodes that fall inside any of the surfaces in the system, we solve the tri
equationp =0 instead of the EL equation. At each boundary of the computational doma
one of the four possible types of boundary conditions must be chosen to describe the
outside the domain. Note that the constant density conditioasd, or p =0) arenot
strongly enforced on the boundaries. Rather, these known densities are used to con
contributions to integrals that extend past the edge of the domain.
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TABLE |
Number of Stencil Points, N, for the § and 8 Function Quadrature Stencils
in 1D, 2D, and 3D When Grid Spacing Is either Olo or 0.050

) 0 ) 0
(Ax=0.10) (Ax=0.10) (Ax =0.050) (Ax =0.050)
1D 11 11 21 21
2D 109 109 385 385
3D 844 1015 3676 6205

3.2. Solution Method

The solution of the EL equations (Eqg. (9)) is straightforward if the fluid density varies or
in one dimension [8, 10, 13]. In these cases the DFT may be solved with either succe:
substitution (Picard iterations) or Newton's method on a desktop workstation.

The Picard and Newton approaches both have their advantages and disadvantages.
ton’s method requires the storage of a large Jacobian matrix, but it is very stable. Solut
can often be found i©(10) Newton iterations [22]. Picard iterations are more straightfo
ward to implement and require a great deal less memory as no Jacobian is stored; how
this approach is less stable, requiring a careful mixing of old and new solution®,&40600)
iterations to convergence. We have implemented Newton’s method to take advantage
superior stability and convergence properties.

The solution to the resulting system of equations is found iteratively with Newtor
method. This requires solving the matrix probldnA; = —R;, whereJ is the Jacobian
matrix, Aj = (k+1) pfk) is the difference between the solution vector at the- 1)st
Newton |terat|on and thigh iteration, andRis the vector of residuals (from the EL equation).
The Jacobian matrix}k; =48R, /8p;j, is

52Q
8p0i (1)épj (r')

_8IJ(rr) " W) p. _ yr ® -
R0 kT/d Zzapyap‘“ (=" =1, (17)

The resulting matrix problem is solved using the Aztec [23] linear solver library.
GMRES solver with no preconditioning and Jacobi scaling usually works well and is 1
basis for all the results presented here.

The two primary challenges to overcome for nonlocal 2D and 3D DFT calculations
the complexity involved in filling the Jacobian and the memory required to store it. T
quadrature stencils of Table | will result in a nonzero Jacobian entry for every position 1
is within 2R of the node of origin. More specifically, for th&x =0.10 mesh there are
21 (1D), 401 (2D), or 7221 (3D) nonzeros per row. Clearly, the EL equations resultin a
denser Jacobian matrix than those coming from most discretizations of partial differer
equations.

To demonstrate the complexity involved infilling the Jacobian, consider Eq. (17). The h
sphere term fog;; involves integrating over the region of overlag?’ (r — r")w® (r” —r’),
of two quadrature stencil functions that start from tlte (r) and thejth (r’) unknown,
respectively (see the 2D schematic in Fig. 2).

Jij =
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FIG.2. Aschematic of the Jacobian calculation. Each(orr, r’) entry in the Jacobian is found by integrating
the overlap regions of the weight functions that are centeredaatr’ respectively. The overlap region is the
central shaded region and contains all thevith nonzero contributions tg; in Eq. (17).

A very inefficient way to calculate the integrals of overlapping weight functions wou
be to calculate one Jacobian entry at a time. With this approach one would loop thro
each combination of two stencils using the mesh points corresponding tththad jth
unknowns as the origin and search for overlaps. With this approach there would be n
wasted effort identifying nonoverlapping regions of the two stencils, and the scaling to
one row of the Jacobian would go like3,,, whereNgen= max(Nan = N

An alternative approach that we have implemented is to fill the Jacobian by rows. -
procedure begins with a loop over one of the stencils with the origin attthenknown
(ith row of the Jacobian). Each of thg,nnodes reached by the stencil is necessarily in th
overlap region of théth unknown and gth unknown that is hit by a second quadrature
stencil that has thiee,th unknown as its origin. Of course, eaptn unknown hit from this
second stencil corresponds to a different column in the Jacobian. As a result, &jdfiven
Jacobian entry is only completely filled when all contributions of all possible combinatio
of weight functions have been calculated. For this algorithm, the scaling to fill one row
the Jacobian goes likeZ2,,,

The scaling for the entire Jacobian fill will go |inodeJ\|52ten, whereNpogesiS the number
of mesh points in the domain. With respect to the number of mesh points in the domain,
scaling is linear, but with respect to mesh spacitg, the scaling is potentially much worse
because bottgen and Nyogesox Ax~P for large enougiNgen Thus in the worst case, the
Jacobian fill scaling will go likeAx—3P (whereD is the number of spatial dimensions in
the problem) assuming that the grid is refined in all dimensions simultaneously. Howe
when Ngten is small (for a coarse grid), the surface contributions, as representh@@p,y
can be dominant. Thus, the lower bound on the scaling wilhlseP—2.

Figure 3 shows the observed scaling of the Jacobian and Residual fills in 1D, 2D,
3D with the number of nodes at fixetix, and with varyingAx at fixed domain size. The
physical system used for these timings was a uniform fluid with bulk boundary conditic
on all edges op,o® = 0.6. The timings were done on a 433-MHz DEC Alpha workstation

4. ALGORITHMS FOR IMPROVED PERFORMANCE

Solving the DFT using the Jacobian fill algorithm described in the previous secti
is expensive for 2D and particularly 3D problems. Therefore, several strategies aime
mitigating the expense of the fill have been implemented, and are outlined here.
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FIG. 3. Jacobian fill time as a function of the size of the mdsh; L, =L, =L, in units ofc (A), and as a
function of the grid spacindx = Ay = Az (B) in units ofc. In (A), the grid spacing iaAx = Ay=Az=0.10. In

(B)the domainsize ik, = L, = L, =20. The scaling coefficients,(time o NJ ,..0r timeo Ax™"), are indicated.

4.1. Jacobian Coarsening

One strategy for reducing the cost of DFT calculations is to recognize that the role of
Jacobianisto efficiently point the vector of unknowns toward the direction of the equilibrit
solution. Thus, a Jacobian matrix that does not have the same degree of accuracy ¢
residual equations can still enable convergence of the Newton’s method, without sacrifi
any accuracy inthe solution. One optionis to coarsen the quadrature stencils for the Jacc

In Fig. 4, we present scalings for two types of Jacobian coarsening. In the first c:
the Jacobian integrals are coarsened by a factor of two as compared with the residua
the second case, the Jacobian integrals are all based on mesh dengities 620 . For
comparison, the cases where there is no Jacobian coarsening (Fig. 3) are also includ
the first case, the scaling of the code is unchanged although the performance is impr
by about a factor of 3. In the second case, the scaling of the code as well as the perforn
is significantly improved.

4.2. Minimal Set Jacobian

Another approach toimproving the performance of the Jacobianfill relies on the simila
of the integrand in th@ calculation (Eq. (6)) and the integrand for the hard sphere term
the Jacobian (Eq. (17)).
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For all of the results presented in the previous sectionspjheere calculated on the
entire mesh prior to loading the Jacobian. However, the loops fop ttelculation (over
N, and N along with the operations performed (locating stencil points and applyir
boundary conditions) are identical to the loops and operations performed in the Jacobia
for the last term in Eq. (17). Thus the weight functiom$;’, may be enumerated and stored
as a function of mesh point as well as the quadrature point when, there calculated.

While this method has potential both for reducing the number of operations in the
(by eliminating boundary checking) and for further generalization to a nonuniform me
(because tha™ functions are stored for every point in the mesh), this approach requil
considerable memory. The memory requirement is minimized by assuming that?he
andw® are dominant in determining the solution. So, only timimal setof weight
functions is stored, and the Jacobian is based only on these two (of four possible) s
weight-function contributions. Neglecting the vector contributions anduttieand w©
terms leads to a Jacobian that is not exact.

The performance gain from this approach comes from minimizing the number of of
ations performed in the innermost loop of the Jacobian. Specifically, the stencil offset
boundary checking procedures are replaced by a multiplicati@f’dfx w”’ and a copy
into memory. The specific number of operations saved depends on the type and proxi
of domain boundaries as well as the dimensionality of the problem.

While considerable speedup is obtained with these minimal set Jacobians (see Fic
the price to be paid can be decreased robustness of the solution method.

4.3. Mesh Coarsening

While the uniform fluid solution considered above serves to demonstrate the sca
behavior of various algorithms, it is an uninteresting case from a physical point of vie
The forte of the DFT approach is to calculate density distributions near surfaces. It t
out that the presence of surfaces also provides an opportunity for further improvemen
code performance.
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In all the cases described above, the meshes were uniform. However, when ther
surfaces present, the solutions can be expected to be most rapidly varying near the sur
Thus a mesh that is denser near the surfaces would be appropriate. Unfortunately a
structured mesh would require storage of quadrature stencils for every node and thus v
be unfeasible.

One alternative we have implemented is to apply a nonuniform mesh that requires «
a limited number of additional quadrature stencils. Such a mesh is shown in Fig. 6, wt
a mesh becomes coarser in steps away from a flat planar surface on the left side of
domain. For this type of nonuniform mesh, a complete set of quadrature stencils is ne
only for each region (or zone) of constant mesh density.

The zone to which a given node belongs is determined by the shortest distance bet
the node and any of the surfaces in the system. The total number of zones in a calcul
and the distances corresponding to break points between zones are adjustable inpt
each successive zone away from the surface, the mesh is coarsened by a factor of tw

Quadrature stencils need not be stored for each point if the dropped nodes (interse
of lightlines in Fig. 6) are retained in some form in the calculation. Then when starting fre

FIG. 6. A schematic of a coarsened mesh. The light lines show the underlying fine mesh, and the dark -
lines show a mesh that is coarsened by factors of two in steps away from a surface.
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range 2< x/o <4, and the third haax =0.20 in the range 4 x/o < 6. The inset shows an expanded view of
the region 2 < x <6o.

a region of dense quadratures, the dense stencil may be applied without difficulty. In
implementation, the fluid density ata dropped node is taken to be the mean of the surrour
nodes. The corresponding residual and Jacobian equations are orders of magnitude ea
fill than the EL equations. Thus there is negligible expense with retaining these coarse
nodes in the solution vector. This approach results in a much sparser matrix and a fastt
because many of the integrals are calculated with far fewer quadrature points.

As an example of the benefits of mesh coarsening, consider the 1D density pro
perpendicular to a smooth infinite planar surface immersed in a liquid-like fluid with bt
density po® = 0.75 shown in Fig. 7. This figure compares results from a uniform mes
(Ax =0.050) with those of a coarsened mesh with three zones. The total solve time for
coarsened mesh (0.255 s) was 2.2 times faster than that for the uniform mesh (0.572 s)
total number of Newton iterations required in both cases was six, and the errors in crit
output parameters were all less than 1%, as is detailed in Table II.

The total savings due to mesh coarsening is dependent on the fraction of the fluid n
thatare near the surfaces as well as the mesh density of the finest grid. Table 11l shows tin
and required number of Newton iterations for four different 1D, 2D, and 3D cases us

TABLE Il
Comparison of Critical Output Parameters: Contact Value of
Density, py; Surface Free Energy,Q°; and Excess Adsorption,I'®*,
for Uniform and Mesh Coarsened Calculations Shown in Fig. 6

Parameter Uniform Coarsened Error (%)
Pu0° 5.1224 5.1202 0.04
Q%02/KT 1.16291 1.16277 0.01
o2 —0.1159 —0.1163 0.34

Note.The surface free energy is reduced by the Boltzmann congtaentd the
temperatureT .
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TABLE IlI
Comparison of Various Algorithms for Problems of Different
Dimensionality, D, and Mesh Spacing Ax/o

419

Coarsé® Coarse Jdt
D(AX) Basic mesh mnimal Jac All Speedup
Jacobian Fill
1D(0.05) 0.051 0.020 0.019 0.0077 7
2D(0.1) 8.86 2.97 0.575 0.215 41
2D(0.05) 397.9 114.1 8.56 2.46 162
3D(0.1) 5589 1798 167.8 52.1 107
Iterations
1D(0.05) 6 6 11 10
2D(0.1) 6 6 12 11
2D(0.05) 6 6 13 12
3D(0.1) 6 6 13 12
Total Time
1D(0.05) 0.578 0.257 0.657 0.276 2
2D(0.1) 64.8 22.2 14.4 5.5 12
2D(0.05) 2777.1 798.2 225.8 64.0 43
3D(0.1) 38112 12121 2907 866 44

Note.The comparison is based on Jacobian fill time (top), Newton iterations (middle),

and total solve time (bottom). All timings are given in seconds.

@ Results for the basic algorithm (Section 2).

b Results for the mesh coarsening algorithm (Section 4.3).

¢ WhenAx = 0.05 see Fig. 7 caption for mesh coarsening details. Wves- 0.1 we used
a two-zone mesh withx =0.1o for 0 < X/o <2 andAx =0.20 for 2 < x/o <6.
9 Results for combined coarsened Jacobian (Section 4.1) and minimal Jacobian (Section 4.2)

algorithms.

¢ Results for combined mesh coarsening, Jacobian coarsening, and minimal Jacobian algo-

rithms.

f Maximum speedup achieved with algorithms from Section 4.1-4.3.

several combinations of the algorithms presented in this section. The maximum spee
over the basic algorithm are detailed in the final column, with the total time to soluti
seeing a factor of order 40 speedup for the largest two problems.

4.4. Enumerated Nonlocal Densities

One final option for improving code performance at the cost of increased memon
to explicitly include residual equations for the nonlocal densities (denBfgdIn this
case, the system of equations to be solved includes both the EL equation (see Eq. (9)
44 2D nonlocal density equations (see Egs. (6) and (7)). In this case, the Jacobian er
corresponding to EL equations are

and

\Jij

SR &ij(r, 1)

T s T )

SR

32D

S8, ()

=2

€

3ped

Py

— (' Pw? (i —r1'j)

(18)

(19)
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FIG. 8. The matrix fill time as a function of mesh spacing for the enumerated nonlocal density algorit|
(solid lines) and the basic algorithm of Fig. 3 (dotted lines). The slopes of the solid lines are 1.9 (1D), 3.3 (Z
and 5.1 (3D).

while the Jacobian entries corresponding to the nonlocal density equations have the f

L SR)/,I(r) N /
Jj = 55,0 Sij(r,r) (20)
and
___Squi(r)_ Y,
i = 78,01- o w?(ri —r)). (22)

This Jacobian has far less complexity than the Jacobian of Eq. (13). There are no integ
and so no calculation of overlapping weight functions is required. We have implemen
this approach in conjunction with the mesh coarsening described earlier. We have alsc
plemented a minimal set Jacobian that includes only the scalar nonlocal density equat
The scaling of these algorithms with mesh spacing is shown in Fig. 8. The scaling of
algorithms is much improved over that shown in Fig. 3. The total solve times using this
proach for the cases outlined in Table lll are 0.44, 3.4, 44, and 194 s for 205 20y 0.1,
2D/0.05, and 3[0.1 cases, respectively. Clearly this approach is particularly powerful f
performing 3D calculations. However, one disadvantage is that Jacobian coarsening (w
can provide a large speedup for the implicit nonlocal density algorithms) often fails due
the explicit inclusion of the integrals over the rapidly varyjp@ ). As a result the optimal
algorithm remains problem dependent.

5. PARALLELIZATION

All the timings in the previous sections were performed on a DEC Alpha workstatic
They demonstrate that on this type of platform, many 2D problems can be performed,
only small 3D problems are possible. In order to consider larger systems, we have devel
a massively parallel implementation of the DFT code.

When implementing the DFT solve on massively parallel, distributed memory compute
the strategy is to split up the global domain so that each processor loads the residua
Jacobian entries for the rows of the unknowns within a unique local domain. Beca
the Jacobian and residual calculations require information outside the local domain, tl
coordinate systems are ultimately required.
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The first coordinate system is the local coordinate system. It contains all the no
that a given processor owns. The indices on the local coordinate system do not fo
any particular geometrical pattern, but are ordered to minimize communication costs.
second coordinate system is the global coordinate system. Global coordinates are ne
to check for boundary conditions and provide a reference frame for the integer operat
performed on the mesh. Finally, in parallel, an extended local coordinate system (ELC:
also needed. This coordinate system contains all the local nodes on a given processo
a larger rectangular cage that contains all the nodes needed for calculating the Jac
entries of the local nodes. The ELCS is set up as a rectangular cage in order to sim
traversing the mesh.

Atglobal domain boundaries, the ELCS is adjusted depending on the boundary condi
If the domain boundary condition is a bulk fluid, is in a wall, or is a reflective boundary, it
not necessary to include points beyond the global domain boundary. On the other hant
periodic boundaries, it is necessary to extend the ELCS beyond the computational dor
The values of the unknowns on these extended points are set equal to their values c
opposite side of the computational domain. The primary advantages of including tf
points explicitly are that boundary checking is not needed and that communications \
processors owning hodes on the opposite side of the domain can be done all at once
end of each Newton iteration.

Many issues regarding the parallelization of the code were facilitated by the Aztec para
iterative linear solver package [23]. In addition to efficiently solving the distributed mati
problem at every iteration of Newton’s method, Aztec performed the key preprocessing:
of identifying the ghost unknowns (those unknowns not owned by the current processo
needed to calculate the residual equations) and setting up the communications for sh
the residual and unknown vectors among processors.

Load balancing is one final challenge for solving the DFT on a distributed memory pa
lel computer. We have applied a weighted recursive spectral bisection method to deter
which nodes on the mesh end up on which processors. At the beginning of the calcula
nothing is known about the surface configuration so the nodes are given equal weight o
and split evenly between the processors. Once the surface boundary elements are ider
the load balance is redone. The nodes that are inside any surface, and for which the eqt
p =0 is solved, are given weights near zero. Nodes that are being treated with a resi
coarsening method also have weights near zero. Otherwise if a fluid node is near a surfe
domain boundary, the weights are higher than the bulk. This heuristic approach is esse
when mesh coarsening is performed. It allows for migration of the computational load a\
from the processors that own nodes near surfaces. However, it is only modestly succe
in balancing the work between processors with respect to checking surfaces and bour
conditions.

Figure 9 demonstrates the parallel scaling of the code. This figure shows three |
dimensional calculations where the domain size dsx6Nproco in size, whereNy is
the number of processors used for the calculation and ranges from 1 to 512. The tim
were performed on the Sandia—Intel Tflops (ASCI-Red) computer, which is compose:
333-MHz Pentium processors. The three curves show the parallel scaling behavior o
different algorithms described in the previous section.

All three algorithms scale well to a large number of processors, though three diffet
behaviors are found for small numbers of processors in Fig. 9. When the exact Jacobi
used with no mesh or Jacobian coarseniagn(Fig. 9), the time per iteration in the solution
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FIG.9. The time per Newton iteration (load and linear solve) as a function of the number of procégsers,
used where the system size increases With.. The various curves arex) Ax = Ay=0.10, exact Jacobian,
no mesh or Jacobian coarsening) (Ax = Ay = 0.050, exact Jacobian, three-zone mesh coarsening with bree
points at 2 and 4 away from a surface, and Jacobian coarsening usitg esh everywherepf same as<)
except minimal Jacobian applied. The number of Newton iterations needed for a solution is 6xY, {12
for (+), and 13-15 ford).

is nearly constant foNpc > 4. For smalleNyoc, the solution time increases as the numbe
of processors decreases. In contrast, when the exact Jacobian is applied with both
and Jacobian coarsening (n Fig. 9), the time per iteration is found to be nearly constar
for all cases. Finally, when the minimal Jacobian is used along with mesh and Jacol
coarseningd in Fig. 9), the time per iteration is nearly constant whdj,.> 16. In this
case, the time per fill increases witicreasing Nyoc when Nproc < 16.

These different behaviors highlight the competing effects that control parallel scaling
the first case, the Jacobian fill dominates over the linear solver, and so the overall sc:
reflects the behavior of the fill. The initial decrease in time with increasing process
results from a decrease in boundary checking on a per processor basis as the domai
increases. In the second case, all boundary condition checking is donejicdifeulation
up front. Thus, the initial increase in solve time reflects the increased time needed for
linear solves as the system size is increased. In the third case, these two effects are of s
magnitude but opposite sign, and therefore the code appears to exhibit nearly perfect pa
scaling.

6. SUMMARY

In this paper we have presented the underlying algorithms for a novel DFT code
calculation of the properties of inhomogeneous fluids hear complex heterogeneous sur
that require 2D or 3D treatments. The nonlinear integral equations describing equilibr
are discretized on a uniform, rectangular mesh and the resulting system of coupled
linear equations are solved using Newton’s method. Algorithms for using inexact Jacol
matrices and power-of-2 mesh coarsening away from the surfaces have been presente
demonstrated to greatly improve the speed and scaling of the algorithms. These algorit|
improvements make most 2D calculations and even small 3D problems feasible on des
computers.
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The code has been written to run on massively parallel computers and is shown to ¢

well up to 512 processors. By using the computational resources of parallel compu
detailed parametric studies of 2D models and large 3D calculations can now be perfort
Further analysis of the method can be found in our companion paper, which addresses i

of

precision in the method for the case of solvated polymers.
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