
Journal of Computational Physics159,407–424 (2000)

doi:10.1006/jcph.2000.6454, available online at http://www.idealibrary.com on

Two- and Three-Dimensional Nonlocal Density
Functional Theory for Inhomogeneous Fluids

I. Algorithms and Parallelization

Laura J. Douglas Frink∗,1 and Andrew G. Salinger†
∗Computational Biology and Materials Technology Department, and†Parallel Computational Sciences

Department, Sandia National Laboratories, Albuquerque, New Mexico 87185
E-mail:∗ljfrink@sandia.gov,†agsalin@sandia.gov

Received August 23, 1999; revised January 19, 2000

Fluids adsorbed near surfaces, near macromolecules, and in porous materials are
inhomogeneous, exhibiting spatially varying density distributions. This inhomogene-
ity in the fluid plays an important role in controlling a wide variety of complex phys-
ical phenomena including wetting, self-assembly, corrosion, and molecular recogni-
tion. One of the key methods for studying the properties of inhomogeneous fluids in
simple geometries has been density functional theory (DFT). However, there has been
a conspicuous lack of calculations in complex two- and three-dimensional geome-
tries. The computational difficulty arises from the need to perform nested integrals
that are due to nonlocal terms in the free energy functional. These integral equations
are expensive both in evaluation time and in memory requirements; however, the
expense can be mitigated by intelligent algorithms and the use of parallel computers.
This paper details our efforts to develop efficient numerical algorithms so that nolocal
DFT calculations in complex geometries that require two or three dimensions can
be performed. The success of this implementation will enable the study of solva-
tion effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in
colloidal suspensions. c© 2000 Academic Press

Key Words:inhomogeneous fluids; solvation; density functional theory; molecular
theory; parallelization; finite element.

1. INTRODUCTION

Fluids near surfaces or macromolecules have properties (e.g., viscosity and density) that
are markedly different from the bulk properties of these fluids. Predicting the structure

1 To whom correspondence should be addressed.

407

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.

408 DOUGLAS FRINK AND SALINGER

of fluids in confined spaces is ultimately critical for calculating adsorption in, solvation
forces on, and wetting of complex surfaces, macromolecules, and porous materials. The
structure of these fluids may be found either with grand canonical Monte Carlo (GCMC)
simulations [1] or molecular dynamics simulations or with molecular theories such as the
density functional theory (DFT) discussed in this paper [2].

In DFT for inhomogeneous fluids, the surface (or macromolecule) generates an external
field in which the fluid molecules equilibrate. Many formulations for DFTs have been
explored in the past two decades [2]. The simplest of these are local DFTs. In these cases, the
free energy density is assumed to depend only on the density at one point in the fluid. Local
DFTs overestimate the energy penalties associated with rapidly varying density profiles and
as a result are inadequate for describing density distributions in fluids near solid interfaces.
The alternative is a nonlocal approach that defines the free energy density to be a function
of a weighted average of all the densities in a nearby region of the fluid.

Unlike DFT for electronic structure calculations, there is no exact Hamiltonian to describe
inhomogeneous fluids. Therefore nonlocal DFTs were initially developed on a somewhat
ad hoc basis with the goal of reproducing GCMC simulations. The most widely applied
of these ad hoc approaches was the Tarazona functional [3]. While the Tarazona approach
is successful in treating both hard sphere and Lennard–Jones fluids near surfaces, it is
difficult to extend to multicomponent systems with particles of unlike size. More recently,
the development of a fundamental measures DFT by Rosenfeld [4] and its application
to inhomogeneous fluids by Kierlik and Rosinberg [5] have allowed for straightforward
extension of DFT approaches to multicomponent systems.

Applications of the Tarazona and, to a lesser extent, the Rosenfeld functionals have
until recently [6, 7] been limited to problems where the density profiles are uniform in
two dimensions (2D). The result is a 1D numerical problem that must be solved. Examples
include adsorption [8] and capillary condensation [9] in slit-like pores, cylindrical pores [10],
and spherical cavities [11]; wetting at homogeneous planar interfaces [12]; and nucleation of
droplets [13]. Estimation of solvation forces between rough and curved interfaces, as well as
adsorption in pore networks, has been obtained with superposition of 1D solutions [14–16].

While 1D calculations have provided a great deal of insight into the underlying physics
controlling inhomogeneous fluids at homogeneous interfaces, these 1D calculations are
ultimately limited in probing the behavior of inhomogeneous fluids at heterogeneous (either
in geometry or chemistry) interfaces. A great deal of interfacial physics and chemistry from
self-assembly to corrosion to molecular recognition depends on surface heterogeneities.
Therefore, extending DFT capabilities to 2D and 3D is a needed development.

To further motivate the discussion, an example of a density profile (calculated using the al-
gorithms described in this paper) in a fluid near a chemically heterogeneous surface is shown
in Fig. 1. In this case, the surface was composed of alternating hydrophilic and hydrophobic
stripes. The hydrophilic portion of the surface is located atx/σ = 0 and 0≤ y/σ <5, and
the hydrophobic portion of the surface is found atx/σ = 0 and 5≤ y/σ ≤ 10, whereσ is
the diameter of a fluid particle. The solution domain has periodic boundaries iny and a
bulk boundary atx/σ = 10. Figure 1 demonstrates the complexity in the fluid structure
near this interface with rapid variations in density both parallel and perpendicular to the
surface. A full analysis of wetting and phase transitions in fluids near this type of chemically
heterogeneous surface may be found elsewhere [17–20].

The remainder of this paper is focused on presenting our numerical implementation of
DFT for 2D and 3D applications. The details of our algorithms and numerical methods are

3D DFT FOR INHOMOGENEOUS FLUIDS, I 409

FIG. 1. The reduced number density,ρσ 3, as a function of position (x andy in units ofσ) near a surface that
is chemically heterogeneous.

presented and applied to the simplest fluid model, a single-component hard sphere fluid.
We defer the discussion of multicomponent systems, Lennard–Jones fluids, and charged
systems to future papers. The outline of this paper is as follows. DFT is briefly reviewed
in Section 2, our basic numerical approach is outlined in Section 3, a variety of algorithms
for improved performance are presented in Section 4, and parallelization is discussed in
Section 5. A detailed discussion of precision and solvated polymers may be found in a
companion paper (Part II) [21].

2. THEORY

Density functional theory is a thermodynamic theory in which the free energy of the
system is minimized with respect to the fluid density distribution,ρ(r). The density distri-
bution is inhomogeneous due to the surfaces or macromolecules in the system which exert
an external field,Vext, on the fluid molecules. The ensemble in which DFT calculations
are most often performed is the grand canonical ensemble (constant chemical potential,µ;
volume,V ; and temperature,T). The grand canonical ensemble is open with respect to
material exchange and so is suitable for any confined fluid that interacts with a bulk fluid.

The grand free energy,Ä isÄ= F −G, whereF is the Helmholtz free energy,G=µN
is the Gibbs free energy, andN= ∫ drρ(r) is the number of fluid particles in the volume of
interest. The equilibrium density distribution is the one that minimizes the free energy via(

δÄ

δρ(r)

)
T,µ

= 0. (1)

410 DOUGLAS FRINK AND SALINGER

The specific definition ofÄ depends on the fluid model of interest. We restrict our discussion
to hard sphere fluids.

Hard sphere fluids are defined by the pair interaction potential

u(r12) =
{∞ if r12 = |r2− r1| < σ,

0 otherwise
(2)

whereσ is the diameter of a fluid particle.
Separating the Helmholtz free energy into ideal,Fid, and excess hard sphere,Fhs, contri-

butions, the grand potential is

Ä = Fid + Fhs−
∫

dr ρ(r)[Vext(r)− µ], (3)

where

Fid = kT
∫

dr ρ(r){ln(33ρ(r))− 1}, (4)

and

Fhs=
∫

dr 8{ρ̄γ (r)}. (5)

The parameters in Eq. (4) are the deBroglie wavelength (3) and the Boltzmann constant (k).
The hard sphere contribution is written in terms of a free energy density,8, that depends
on thenonlocaldensities, ¯ρ. These nonlocal densities are defined by the weight functions,
w(γ), as

ρ̄γ (r) =
∫

dr ′ρ(r ′)w(γ)(r − r ′). (6)

The six weight functions in Rosenfeld’s theory [4] are

w(3)(r) = θ(r − R)

w(2)(r) = 4πRw(1)(r) = 4πR2w(0)(r) = δ(r − R)

w(V2)(r) = 4πRw(V1)(r) = (r/r)δ(r − R), (7)

wherer indicates a vector andr = |r |. These weight functions are based on the geometry of
the fluid particles asθ is the step function,δ is the Dirac delta function, andR is the radius
of a particle. Thus the integrals over weight functions are related to the volume, surface
area, and radius of the particle. The hard sphere free energy density is a sum of scalar and
vector contributions,8=8s+8v, with

8s = −ρ̄0 ln(1− ρ̄3)+ ρ̄1ρ̄2

1− ρ̄3
+ 1

24π

ρ̄3
2

(1− ρ̄3)2
and

8v = − ρ̄V1 · ρ̄V2

1− ρ̄3
− 1

8π

ρ̄2(ρ̄V2 · ρ̄V2)

(1− ρ̄3)2
. (8)

3D DFT FOR INHOMOGENEOUS FLUIDS, I 411

Performing the functional minimization in Eq. (1) on Eq. (3) yields the Euler–Lagrange
(EL) equation

µ = kT ln(ρ(r))+ Vext(r)+
∫

dr ′
(∑

γ

∂8

∂ρ̄γ
w(γ)(r − r ′)

)
, (9)

which must be solved at every point in the mesh.
Note that Eq. (9) includes a volumetric integral, whose integrand is a nonlinear function

of the ρ̄ functions, which are themselves integrals over the unknown density distribution.
The resulting nested integrals present the main computational difficulty in solving DFT.

The computational domain in any calculation is rectangular with edges of lengthLx, L y,
andLz. There are four types of boundary conditions that may be applied at the edges of the
computational domain. In the case of bulk boundaries, the fluid is assumed to be uniform
with ρ= ρb beyond the computational domain. For wall boundaries, the fluid densities are
ρ= 0 beyond the computational domain; for periodic boundaries, the fluid densities beyond
the edge of the domain (assuming the periodic boundary is applied in thex direction) are

ρ(x, y, z) =
{
ρ(x + Lx, y, z) if x < 0

ρ(x − Lx, y, z) x > Lx
. (10)

Finally, for reflective boundaries in thex direction, the boundary conditions are

ρ(x, y, z) =
{
ρ(|x|, y, z) if x < 0

ρ(2Lx − x, y, z) x > Lx
. (11)

3. NUMERICAL METHODS

3.1. Mesh and Quadrature

A collocation approach is used to determine the density distribution that satisfies the
EL equation in the neighborhood of surfaces. The problem geometry is represented by a
mesh. The densities at the nodes of the mesh are unknowns, and the density distribution is
assumed to vary linearly between the nodes. The EL equations are required to be satisfied
at the nodes.

The main computational complexity is computing the integrals of a functionf over the
weight functions in Eq. (7), whether it is to evaluate the ¯ρ functions (f = ρ) or the integral
term in the EL equation (f = ∂8/∂ρ̄). The integrals are computed numerically, using a
precalculated numerical integration stencil,

∫
f (r ′)w(γ)(r − r ′)dr ′ ≈

N(γ)
sten∑

i=1

C(γ)
i ω

(γ)
i fi , (12)

whereN(γ)
sten is the total number of points in theγ th weight function stencil. The weight

functions are split into their prefactors (e.g.,C(γ)
i = r/(4πRr) for w(V1)) and the funda-

mentalθ andδ weight functions,ω. For 1D and 2D problems, the 3Dθ andδ functions
are collapsed analytically into integrals along a line or on a disk, respectively, before the
numerical integration is performed. For the 2D stencils, we integrate Eq. (12) over one

412 DOUGLAS FRINK AND SALINGER

dimension (z′) analytically to get

2R
∫ ∫

C(γ) f (x′, y′)
√

1− x′2− y′2 θ(R−
√

x′2+ y′2) dx′dy′ (13)

for integrations over the 3Dθ function stencils, and

2
∫ ∫

C(γ) f (x′, y′)√
1− x′2− y′2

θ(R−
√

x′2+ y′2) dx′dy′ (14)

for integrations over the 3Dδ function stencils. In 1D, Eq. (12) is integrated over two
dimensions (z′, y′) to obtain

πR2
∫

C(γ) f (x′)(1− x′2) θ(R− |x′|) dx′ (15)

for integrations over the 3Dθ function stencils, and

2πR
∫

C(γ) f (x′) θ(R− |x′|) dx′ (16)

for integrations over the 3Dδ function stencils. It was found that very accurate stencils
are needed to obtain accurate density profiles with the rapid variations as shown in Fig. 1.
So, all integration stencils,w(γ)i , are calculated numerically by finding the contribution
to each node from each element. In elements that fall entirely within the sphere (3D),
disk (2D), or endpoints (1D), the integrand is smooth, and a simple Gauss quadrature is
used. In elements that straddle the sphere (disk, endpoints), the integrand is discontinuous,
so a simple midpoint rule is used with numerous equally spaced (and equally weighted)
quadrature points.

For an arbitrary nonuniform mesh, the calculation and storage of these stencils would be
prohibitively expensive. Instead, we restrict our mesh to be a rectangular, Cartesian mesh
with constant node spacings,1x in each direction. The rectangular mesh allows each node
to be identified with an (i , j , k) integer location. With the uniform mesh, the stencils can be
calculated once and stored in a list that contains the offsets in (i , j , k) space and the weights
ω
(γ)
i . The stencil calculation is thereby reduced to a quick preprocessing step. The main

drawback of requiring a rectangular mesh is that surfaces with boundaries that do not align
with the Cartesian axes must be represented by staircased boundaries. The consequences
of surface staircasing are considered in Part II.

The numbers of quadrature points in theδ andθ function stencils for 1D, 2D, and 3D
calculations on meshes with1x= 0.1σ and1x= 0.05σ are shown in Table I. The number
of stencil points in theδ and θ function are identical in 1D and 2D due to analytical
integration over dimensions with uniform densities.

For mesh nodes that fall inside any of the surfaces in the system, we solve the trivial
equationρ= 0 instead of the EL equation. At each boundary of the computational domain,
one of the four possible types of boundary conditions must be chosen to describe the fluid
outside the domain. Note that the constant density conditions (ρ= ρb or ρ= 0) arenot
strongly enforced on the boundaries. Rather, these known densities are used to compute
contributions to integrals that extend past the edge of the domain.

3D DFT FOR INHOMOGENEOUS FLUIDS, I 413

TABLE I

Number of Stencil Points,Nsten, for the δ and θ Function Quadrature Stencils

in 1D, 2D, and 3D When Grid Spacing Is either 0.1σ or 0.05σ

δ θ δ θ

(1x= 0.1σ) (1x= 0.1σ) (1x= 0.05σ) (1x= 0.05σ)

1D 11 11 21 21
2D 109 109 385 385
3D 844 1015 3676 6205

3.2. Solution Method

The solution of the EL equations (Eq. (9)) is straightforward if the fluid density varies only
in one dimension [8, 10, 13]. In these cases the DFT may be solved with either successive
substitution (Picard iterations) or Newton’s method on a desktop workstation.

The Picard and Newton approaches both have their advantages and disadvantages. New-
ton’s method requires the storage of a large Jacobian matrix, but it is very stable. Solutions
can often be found inO(10) Newton iterations [22]. Picard iterations are more straightfor-
ward to implement and require a great deal less memory as no Jacobian is stored; however,
this approach is less stable, requiring a careful mixing of old and new solutions, andO(1000)
iterations to convergence. We have implemented Newton’s method to take advantage of its
superior stability and convergence properties.

The solution to the resulting system of equations is found iteratively with Newton’s
method. This requires solving the matrix problemJi j1 j =−Ri , whereJ is the Jacobian
matrix,1 j = ρ(k+ 1)

j − ρ(k)j is the difference between the solution vector at the(k+ 1)st
Newton iteration and thekth iteration, andR is the vector of residuals (from the EL equation).
The Jacobian matrix,Ji j = δRi /δρ j , is

Ji j = δ2Ä

δρi (r)δρ j (r ′)

= δi, j (r , r ′)
ρi (r)

+ 1

kT

∫
dr ′′

∑
γ

∑
ξ

∂28

∂ρ̄γ ∂ρ̄ξ
(r ′′)w(γ)(r i − r ′′)w(ξ)(r ′′ − r ′ j). (17)

The resulting matrix problem is solved using the Aztec [23] linear solver library. A
GMRES solver with no preconditioning and Jacobi scaling usually works well and is the
basis for all the results presented here.

The two primary challenges to overcome for nonlocal 2D and 3D DFT calculations are
the complexity involved in filling the Jacobian and the memory required to store it. The
quadrature stencils of Table I will result in a nonzero Jacobian entry for every position that
is within 2R of the node of origin. More specifically, for the1x= 0.1σ mesh there are
21 (1D), 401 (2D), or 7221 (3D) nonzeros per row. Clearly, the EL equations result in a far
denser Jacobian matrix than those coming from most discretizations of partial differential
equations.

To demonstrate the complexity involved in filling the Jacobian, consider Eq. (17). The hard
sphere term forJi j involves integrating over the region of overlap,w(γ)(r − r ′′)w(ξ)(r ′′ − r ′),
of two quadrature stencil functions that start from thei th (r) and the j th (r ′) unknown,
respectively (see the 2D schematic in Fig. 2).

414 DOUGLAS FRINK AND SALINGER

FIG. 2. A schematic of the Jacobian calculation. Eachi, j (or r , r ′) entry in the Jacobian is found by integrating
the overlap regions of the weight functions that are centered atr andr ′ respectively. The overlap region is the
central shaded region and contains all ther ′′ with nonzero contributions toJi j in Eq. (17).

A very inefficient way to calculate the integrals of overlapping weight functions would
be to calculate one Jacobian entry at a time. With this approach one would loop through
each combination of two stencils using the mesh points corresponding to thei th and j th
unknowns as the origin and search for overlaps. With this approach there would be much
wasted effort identifying nonoverlapping regions of the two stencils, and the scaling to fill
one row of the Jacobian would go likeN3

sten, whereNsten= max(N(γ)
sten)= N(θ)

sten.
An alternative approach that we have implemented is to fill the Jacobian by rows. The

procedure begins with a loop over one of the stencils with the origin at thei th unknown
(i th row of the Jacobian). Each of theistennodes reached by the stencil is necessarily in the
overlap region of thei th unknown and aj th unknown that is hit by a second quadrature
stencil that has theistenth unknown as its origin. Of course, eachj th unknown hit from this
second stencil corresponds to a different column in the Jacobian. As a result, a giveni j th
Jacobian entry is only completely filled when all contributions of all possible combinations
of weight functions have been calculated. For this algorithm, the scaling to fill one row of
the Jacobian goes likeN2

sten.
The scaling for the entire Jacobian fill will go likeNnodesN2

sten, whereNnodesis the number
of mesh points in the domain. With respect to the number of mesh points in the domain, the
scaling is linear, but with respect to mesh spacing,1x, the scaling is potentially much worse
because bothNstenandNnodes∝ 1x−D for large enoughNsten. Thus in the worst case, the
Jacobian fill scaling will go like1x−3D (whereD is the number of spatial dimensions in
the problem) assuming that the grid is refined in all dimensions simultaneously. However,
when Nsten is small (for a coarse grid), the surface contributions, as represented byN(δ)

sten,
can be dominant. Thus, the lower bound on the scaling will be1x−(3D−2).

Figure 3 shows the observed scaling of the Jacobian and Residual fills in 1D, 2D, and
3D with the number of nodes at fixed1x, and with varying1x at fixed domain size. The
physical system used for these timings was a uniform fluid with bulk boundary conditions
on all edges ofρbσ

3= 0.6. The timings were done on a 433-MHz DEC Alpha workstation.

4. ALGORITHMS FOR IMPROVED PERFORMANCE

Solving the DFT using the Jacobian fill algorithm described in the previous section
is expensive for 2D and particularly 3D problems. Therefore, several strategies aimed at
mitigating the expense of the fill have been implemented, and are outlined here.

3D DFT FOR INHOMOGENEOUS FLUIDS, I 415

FIG. 3. Jacobian fill time as a function of the size of the mesh,L = Lx = L y= Lz, in units ofσ (A), and as a
function of the grid spacing1x=1y=1z (B) in units ofσ . In (A), the grid spacing is1x=1y=1z= 0.1σ . In
(B) the domain size isLx = L y= Lz= 2σ . The scaling coefficients,n (time∝ Nn

nodesor time∝1x−n), are indicated.

4.1. Jacobian Coarsening

One strategy for reducing the cost of DFT calculations is to recognize that the role of the
Jacobian is to efficiently point the vector of unknowns toward the direction of the equilibrium
solution. Thus, a Jacobian matrix that does not have the same degree of accuracy as the
residual equations can still enable convergence of the Newton’s method, without sacrificing
any accuracy in the solution. One option is to coarsen the quadrature stencils for the Jacobian.

In Fig. 4, we present scalings for two types of Jacobian coarsening. In the first case,
the Jacobian integrals are coarsened by a factor of two as compared with the residuals. In
the second case, the Jacobian integrals are all based on mesh densities of1x= 0.2σ . For
comparison, the cases where there is no Jacobian coarsening (Fig. 3) are also included. In
the first case, the scaling of the code is unchanged although the performance is improved
by about a factor of 3. In the second case, the scaling of the code as well as the performance
is significantly improved.

4.2. Minimal Set Jacobian

Another approach to improving the performance of the Jacobian fill relies on the similarity
of the integrand in the ¯ρ calculation (Eq. (6)) and the integrand for the hard sphere term in
the Jacobian (Eq. (17)).

416 DOUGLAS FRINK AND SALINGER

FIG. 4. The Jacobian fill time as a function of the mesh density,1x/σ , used for theresidualcalculations.
The various curves have Jacobian stencils coarsened by a factor of two (solid lines), Jacobian stencils based
on 1x= 0.2σ mesh always (dashed lines), and no Jacobian coarsening (dotted lines). The scaling exponents
associated with solid lines aren= 2.7 (1D), n= 5.0 (2D), andn= 7.0 (3D). The scaling exponents associated
with dashed lines aren= 2.0 (1D),n= 3.7 (2D), andn= 4.7 (3D).

For all of the results presented in the previous sections, the ¯ργ were calculated on the
entire mesh prior to loading the Jacobian. However, the loops for the ¯ρ calculation (over
N(δ)

sten andN(θ)
sten) along with the operations performed (locating stencil points and applying

boundary conditions) are identical to the loops and operations performed in the Jacobian fill
for the last term in Eq. (17). Thus the weight functions,w(γ), may be enumerated and stored
as a function of mesh point as well as the quadrature point when the ¯ργ ’s are calculated.

While this method has potential both for reducing the number of operations in the fill
(by eliminating boundary checking) and for further generalization to a nonuniform mesh
(because thew(γ) functions are stored for every point in the mesh), this approach requires
considerable memory. The memory requirement is minimized by assuming that thew(2)

andw(3) are dominant in determining the solution. So, only thisminimal setof weight
functions is stored, and the Jacobian is based only on these two (of four possible) scalar
weight-function contributions. Neglecting the vector contributions and thew(1) andw(0)

terms leads to a Jacobian that is not exact.
The performance gain from this approach comes from minimizing the number of oper-

ations performed in the innermost loop of the Jacobian. Specifically, the stencil offset and
boundary checking procedures are replaced by a multiplication ofC(γ)×w(γ)i and a copy
into memory. The specific number of operations saved depends on the type and proximity
of domain boundaries as well as the dimensionality of the problem.

While considerable speedup is obtained with these minimal set Jacobians (see Fig. 5),
the price to be paid can be decreased robustness of the solution method.

4.3. Mesh Coarsening

While the uniform fluid solution considered above serves to demonstrate the scaling
behavior of various algorithms, it is an uninteresting case from a physical point of view.
The forte of the DFT approach is to calculate density distributions near surfaces. It turns
out that the presence of surfaces also provides an opportunity for further improvements in
code performance.

3D DFT FOR INHOMOGENEOUS FLUIDS, I 417

FIG. 5. The scaling of the Jacobian fill as a function of the mesh density,1x=1y=1z, used for theresidual
calculations in units ofσ . The dotted lines are the exact Jacobian results (see Fig. 3), the solid lines are the minimal
set Jacobian without Jacobian coarsening, and the dashed lines have both the minimal set Jacobian and Jacobian
coarsening where the Jacobian integrals are based on1x= 0.2σ . The scaling exponents associated with solid
lines aren= 2.9 (1D), n= 5.2 (2D), andn= 7.5 (3D). The scaling exponents associated with dashed lines are
n= 2.1 (1D),n= 3.9 (2D), andn= 5.1 (3D).

In all the cases described above, the meshes were uniform. However, when there are
surfaces present, the solutions can be expected to be most rapidly varying near the surfaces.
Thus a mesh that is denser near the surfaces would be appropriate. Unfortunately an un-
structured mesh would require storage of quadrature stencils for every node and thus would
be unfeasible.

One alternative we have implemented is to apply a nonuniform mesh that requires only
a limited number of additional quadrature stencils. Such a mesh is shown in Fig. 6, where
a mesh becomes coarser in steps away from a flat planar surface on the left side of a 2D
domain. For this type of nonuniform mesh, a complete set of quadrature stencils is needed
only for each region (or zone) of constant mesh density.

The zone to which a given node belongs is determined by the shortest distance between
the node and any of the surfaces in the system. The total number of zones in a calculation
and the distances corresponding to break points between zones are adjustable inputs. In
each successive zone away from the surface, the mesh is coarsened by a factor of two.

Quadrature stencils need not be stored for each point if the dropped nodes (intersection
of light lines in Fig. 6) are retained in some form in the calculation. Then when starting from

FIG. 6. A schematic of a coarsened mesh. The light lines show the underlying fine mesh, and the dark solid
lines show a mesh that is coarsened by factors of two in steps away from a surface.

418 DOUGLAS FRINK AND SALINGER

FIG. 7. The number density,ρσ 3 as a function of the distance away from a hard planar surface. The dotted line
show the result for a uniform mesh with1x= 0.05σ . The solid line shows the result for a case with mesh coarsening
and three zones. The first zone has1x= 0.05σ in the range 0< x/σ <2, the second zone has1x= 0.1σ in the
range 2< x/σ <4, and the third has1x= 0.2σ in the range 4< x/σ <6. The inset shows an expanded view of
the region 2σ < x< 6σ .

a region of dense quadratures, the dense stencil may be applied without difficulty. In our
implementation, the fluid density at a dropped node is taken to be the mean of the surrounding
nodes. The corresponding residual and Jacobian equations are orders of magnitude easier to
fill than the EL equations. Thus there is negligible expense with retaining these coarsened
nodes in the solution vector. This approach results in a much sparser matrix and a faster fill
because many of the integrals are calculated with far fewer quadrature points.

As an example of the benefits of mesh coarsening, consider the 1D density profiles
perpendicular to a smooth infinite planar surface immersed in a liquid-like fluid with bulk
densityρσ 3= 0.75 shown in Fig. 7. This figure compares results from a uniform mesh
(1x= 0.05σ) with those of a coarsened mesh with three zones. The total solve time for the
coarsened mesh (0.255 s) was 2.2 times faster than that for the uniform mesh (0.572 s). The
total number of Newton iterations required in both cases was six, and the errors in critical
output parameters were all less than 1%, as is detailed in Table II.

The total savings due to mesh coarsening is dependent on the fraction of the fluid nodes
that are near the surfaces as well as the mesh density of the finest grid. Table III shows timings
and required number of Newton iterations for four different 1D, 2D, and 3D cases using

TABLE II

Comparison of Critical Output Parameters: Contact Value of

Density, ρw; Surface Free Energy,Ωs; and Excess Adsorption,Γex,

for Uniform and Mesh Coarsened Calculations Shown in Fig. 6

Parameter Uniform Coarsened Error (%)

ρwσ
3 5.1224 5.1202 0.04

Äsσ 2/kT 1.16291 1.16277 0.01
0exσ 2 −0.1159 −0.1163 0.34

Note.The surface free energy is reduced by the Boltzmann constant,k, and the
temperature,T .

3D DFT FOR INHOMOGENEOUS FLUIDS, I 419

TABLE III

Comparison of Various Algorithms for Problems of Different

Dimensionality, D, and Mesh Spacing,∆x/σ

Coarseb,c Coarse Jacd

D(1x) Basica mesh mnimal Jac Alle Speedup

Jacobian Fill
1D(0.05) 0.051 0.020 0.019 0.0077 7
2D(0.1) 8.86 2.97 0.575 0.215 41
2D(0.05) 397.9 114.1 8.56 2.46 162
3D(0.1) 5589 1798 167.8 52.1 107

Iterations
1D(0.05) 6 6 11 10
2D(0.1) 6 6 12 11
2D(0.05) 6 6 13 12
3D(0.1) 6 6 13 12

Total Time
1D(0.05) 0.578 0.257 0.657 0.276 2
2D(0.1) 64.8 22.2 14.4 5.5 12
2D(0.05) 2777.1 798.2 225.8 64.0 43
3D(0.1) 38112 12121 2907 866 44

Note.The comparison is based on Jacobian fill time (top), Newton iterations (middle),
and total solve time (bottom). All timings are given in seconds.
a Results for the basic algorithm (Section 2).
b Results for the mesh coarsening algorithm (Section 4.3).
c When1x= 0.05 see Fig. 7 caption for mesh coarsening details. When1x= 0.1 we used
a two-zone mesh with1x= 0.1σ for 0< x/σ <2 and1x= 0.2σ for 2< x/σ <6.
d Results for combined coarsened Jacobian (Section 4.1) and minimal Jacobian (Section 4.2)
algorithms.
e Results for combined mesh coarsening, Jacobian coarsening, and minimal Jacobian algo-
rithms.
f Maximum speedup achieved with algorithms from Section 4.1–4.3.

several combinations of the algorithms presented in this section. The maximum speedups
over the basic algorithm are detailed in the final column, with the total time to solution
seeing a factor of order 40 speedup for the largest two problems.

4.4. Enumerated Nonlocal Densities

One final option for improving code performance at the cost of increased memory is
to explicitly include residual equations for the nonlocal densities (denotedRγ). In this
case, the system of equations to be solved includes both the EL equation (see Eq. (9)) and
4+ 2D nonlocal density equations (see Eqs. (6) and (7)). In this case, the Jacobian entries
corresponding to EL equations are

Ji j = δRi (r)
δρ j (r ′)

= δi j (r , r ′)
ρi (r)

(18)

and

Ji j = δRi (r)
δρ̄γ, j (r ′)

=
∑
ε

∂28

∂ρ̄ε∂ρ̄γ
(r ′ j)w(γ)(r i − r ′ j) (19)

420 DOUGLAS FRINK AND SALINGER

FIG. 8. The matrix fill time as a function of mesh spacing for the enumerated nonlocal density algorithm
(solid lines) and the basic algorithm of Fig. 3 (dotted lines). The slopes of the solid lines are 1.9 (1D), 3.3 (2D),
and 5.1 (3D).

while the Jacobian entries corresponding to the nonlocal density equations have the form

Ji j = δRγ,i (r)
δρ̄γ, j (r ′)

= −δi j (r , r ′) (20)

and

Ji j = δRγ,i (r)
δρ j (r ′)

= w(γ)(r i − r ′j). (21)

This Jacobian has far less complexity than the Jacobian of Eq. (13). There are no integrals,
and so no calculation of overlapping weight functions is required. We have implemented
this approach in conjunction with the mesh coarsening described earlier. We have also im-
plemented a minimal set Jacobian that includes only the scalar nonlocal density equations.
The scaling of these algorithms with mesh spacing is shown in Fig. 8. The scaling of the
algorithms is much improved over that shown in Fig. 3. The total solve times using this ap-
proach for the cases outlined in Table III are 0.44, 3.4, 44, and 194 s for the 1D/0.05, 2D/0.1,
2D/0.05, and 3D/0.1 cases, respectively. Clearly this approach is particularly powerful for
performing 3D calculations. However, one disadvantage is that Jacobian coarsening (which
can provide a large speedup for the implicit nonlocal density algorithms) often fails due to
the explicit inclusion of the integrals over the rapidly varyingρ(r). As a result the optimal
algorithm remains problem dependent.

5. PARALLELIZATION

All the timings in the previous sections were performed on a DEC Alpha workstation.
They demonstrate that on this type of platform, many 2D problems can be performed, yet
only small 3D problems are possible. In order to consider larger systems, we have developed
a massively parallel implementation of the DFT code.

When implementing the DFT solve on massively parallel, distributed memory computers,
the strategy is to split up the global domain so that each processor loads the residual and
Jacobian entries for the rows of the unknowns within a unique local domain. Because
the Jacobian and residual calculations require information outside the local domain, three
coordinate systems are ultimately required.

3D DFT FOR INHOMOGENEOUS FLUIDS, I 421

The first coordinate system is the local coordinate system. It contains all the nodes
that a given processor owns. The indices on the local coordinate system do not follow
any particular geometrical pattern, but are ordered to minimize communication costs. The
second coordinate system is the global coordinate system. Global coordinates are needed
to check for boundary conditions and provide a reference frame for the integer operations
performed on the mesh. Finally, in parallel, an extended local coordinate system (ELCS) is
also needed. This coordinate system contains all the local nodes on a given processor plus
a larger rectangular cage that contains all the nodes needed for calculating the Jacobian
entries of the local nodes. The ELCS is set up as a rectangular cage in order to simplify
traversing the mesh.

At global domain boundaries, the ELCS is adjusted depending on the boundary condition.
If the domain boundary condition is a bulk fluid, is in a wall, or is a reflective boundary, it is
not necessary to include points beyond the global domain boundary. On the other hand, for
periodic boundaries, it is necessary to extend the ELCS beyond the computational domain.
The values of the unknowns on these extended points are set equal to their values on the
opposite side of the computational domain. The primary advantages of including these
points explicitly are that boundary checking is not needed and that communications with
processors owning nodes on the opposite side of the domain can be done all at once at the
end of each Newton iteration.

Many issues regarding the parallelization of the code were facilitated by the Aztec parallel,
iterative linear solver package [23]. In addition to efficiently solving the distributed matrix
problem at every iteration of Newton’s method, Aztec performed the key preprocessing step
of identifying the ghost unknowns (those unknowns not owned by the current processor but
needed to calculate the residual equations) and setting up the communications for sharing
the residual and unknown vectors among processors.

Load balancing is one final challenge for solving the DFT on a distributed memory paral-
lel computer. We have applied a weighted recursive spectral bisection method to determine
which nodes on the mesh end up on which processors. At the beginning of the calculation,
nothing is known about the surface configuration so the nodes are given equal weight of one
and split evenly between the processors. Once the surface boundary elements are identified,
the load balance is redone. The nodes that are inside any surface, and for which the equation
ρ= 0 is solved, are given weights near zero. Nodes that are being treated with a residual
coarsening method also have weights near zero. Otherwise if a fluid node is near a surface or
domain boundary, the weights are higher than the bulk. This heuristic approach is essential
when mesh coarsening is performed. It allows for migration of the computational load away
from the processors that own nodes near surfaces. However, it is only modestly successful
in balancing the work between processors with respect to checking surfaces and boundary
conditions.

Figure 9 demonstrates the parallel scaling of the code. This figure shows three two-
dimensional calculations where the domain size is 6σ × Nprocσ in size, whereNproc is
the number of processors used for the calculation and ranges from 1 to 512. The timings
were performed on the Sandia–Intel Tflops (ASCI-Red) computer, which is composed of
333-MHz Pentium processors. The three curves show the parallel scaling behavior of the
different algorithms described in the previous section.

All three algorithms scale well to a large number of processors, though three different
behaviors are found for small numbers of processors in Fig. 9. When the exact Jacobian is
used with no mesh or Jacobian coarsening (× in Fig. 9), the time per iteration in the solution

422 DOUGLAS FRINK AND SALINGER

FIG. 9. The time per Newton iteration (load and linear solve) as a function of the number of processors,Nproc,
used where the system size increases withNproc. The various curves are (×) 1x=1y= 0.1σ , exact Jacobian,
no mesh or Jacobian coarsening; (+) 1x=1y= 0.05σ , exact Jacobian, three-zone mesh coarsening with break
points at 2σ and 4σ away from a surface, and Jacobian coarsening using 0.2σ mesh everywhere; (◦) same as (+)
except minimal Jacobian applied. The number of Newton iterations needed for a solution is 6–7 for (×), 10–12
for (+), and 13–15 for (◦).

is nearly constant forNproc≥ 4. For smallerNproc, the solution time increases as the number
of processors decreases. In contrast, when the exact Jacobian is applied with both mesh
and Jacobian coarsening (+ in Fig. 9), the time per iteration is found to be nearly constant
for all cases. Finally, when the minimal Jacobian is used along with mesh and Jacobian
coarsening (◦ in Fig. 9), the time per iteration is nearly constant whenNproc≥ 16. In this
case, the time per fill increases withincreasing Nproc whenNproc≤ 16.

These different behaviors highlight the competing effects that control parallel scaling. In
the first case, the Jacobian fill dominates over the linear solver, and so the overall scaling
reflects the behavior of the fill. The initial decrease in time with increasing processors
results from a decrease in boundary checking on a per processor basis as the domain size
increases. In the second case, all boundary condition checking is done in the ¯ρ calculation
up front. Thus, the initial increase in solve time reflects the increased time needed for the
linear solves as the system size is increased. In the third case, these two effects are of similar
magnitude but opposite sign, and therefore the code appears to exhibit nearly perfect parallel
scaling.

6. SUMMARY

In this paper we have presented the underlying algorithms for a novel DFT code for
calculation of the properties of inhomogeneous fluids near complex heterogeneous surfaces
that require 2D or 3D treatments. The nonlinear integral equations describing equilibrium
are discretized on a uniform, rectangular mesh and the resulting system of coupled non-
linear equations are solved using Newton’s method. Algorithms for using inexact Jacobian
matrices and power-of-2 mesh coarsening away from the surfaces have been presented and
demonstrated to greatly improve the speed and scaling of the algorithms. These algorithmic
improvements make most 2D calculations and even small 3D problems feasible on desktop
computers.

3D DFT FOR INHOMOGENEOUS FLUIDS, I 423

The code has been written to run on massively parallel computers and is shown to scale
well up to 512 processors. By using the computational resources of parallel computers,
detailed parametric studies of 2D models and large 3D calculations can now be performed.
Further analysis of the method can be found in our companion paper, which addresses issues
of precision in the method for the case of solvated polymers.

ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
U.S. Department of Energy under Contract DE-AC04-94AL85000.

REFERENCES

1. I. K. Snook and W. van Megen, Solvation forces in simple dense fluids, 1,J. Chem. Phys.72, 2907 (1980).

2. D. Henderson, Ed.,Fundamentals of Inhomogeneous Fluids(Dekker, New York, 1992).

3. P. Tarazona and R. Evans, A simple density functional theory for inhomogeneous liquids: Wetting by gas at
a solid liquid interface,Mol. Phys.52, 847 (1984).

4. Y. Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional
theory of freezing,Phys. Rev. Lett.63, 980 (1989).

5. E. Kierlik and M. L. Rosinberg, Free-energy density functional for the inhomogeneous hard-sphere fluid: Ap-
plication to interfacial adsorption,Phys. Rev. A42, 3382 (1990); Density-functional theory for inhomogeneous
fluids: Adsorption of binary-mixtures,Phys. Rev. A44, 5025 (1991).

6. R. Ohnesorge, H. L¨owen, and H. Wagner, Density-functional theory of crystal fluid interfaces and surface
melting,Phys. Rev. E50, 4801 (1994).

7. H. H. von Grünberg and R. Klein, Density functional theory of nonuniform colloidal suspensions: 3D density
distributions and depletion forces,J. Chem. Phys.110, 5421 (1999).

8. T. K. Vanderlick, L. E. Scriven, and H. T. Davis, Molecular theories of confined fluids,J. Chem. Phys.90,
2422 (1989).

9. R. Evans, Fluids adsorbed in narrow pores: Phase-equilibria and structure,J. Phys. Condens. Matter2, 8989
(1990).

10. U. Marini Bettolo Marconi and F. van Swol, Structure effects and phase-equilibria of Lennard–Jones mixtures
in a cylindrical pore: A nonlocal density-functional theory,Mol. Phys.5, 1081 (1991).

11. A. Gonzalez, J. A. White, F. L. Roman, S. Velsco, and R. Evans, Density functional theory for small systems:
Hard-spheres in a closed spherical cavity,Phys. Rev. Lett.79, 2466 (1997).

12. E. Velasco and P. Tarazona, Prewetting at a solid–fluid interface via Monte-Carlo simulation: Comment,Phys.
Rev. A42, 2454 (1990).

13. V. Talanquer and D. W. Oxtoby, Dynamical density-functional theory of gas–liquid nucleation,J. Chem. Phys.
100, 5190 (1994).

14. L. J. Douglas Frink and F. van Swol, A molecular theory for surface forces adhesion measurements,J. Chem.
Phys.106, 3782 (1997).

15. L. J. Douglas Frink and F. van Swol, Solvation forces between rough surfaces,J. Chem. Phys.108, 5588
(1998).

16. L. J. Douglas Frink and F. van Swol, Stress isotherms of porous thin materials: Theoretical predictions from
a nonlocal density functional theory,Langmuir15, 3296 (1999).

17. L. J. Douglas Frink and A. G. Salinger, Wetting of a chemically heterogeneous surface,J. Chem. Phys.110,
5969 (1999).

18. J. R. Henderson, Statistical mechanics of patterned inhomogeneous fluid phenomena,J. Phys. Condens. Matter
11, 629 (1999).

19. M. Schoen and D. J. Diestler, Ultrathin fluid films confined to a chemically heterogeneous slit-shaped nanopore,
Phys. Rev. E56, 4427 (1997).

424 DOUGLAS FRINK AND SALINGER

20. P. Röcken, A. Somoza, P. Tarazona, and G. Findenegg, 2-Stage capillary condensation in pores with structured
walls: A nonlocal density-functional theory,J. Chem. Phys.108, 8689 (1998).

21. L. J. Douglas Frink and A. G. Salinger, Two- and three-dimensional nonlocal density functional theory for
inhomogeneous fluids. II. Solvated polymers as a benchmark problem,J. Comput. Phys.159, 425 (2000).

22. J. R. Henderson and Z. A. Sabeur, Liquid-state integral-equations at high-density: On the mathematical origin
of infinite-range oscillatory solutions,J. Chem. Phys.97, 6750 (1992).

23. S. A. Hutchinson, L. V. Prevost, R. S. Tuminaro, and J. N. Shadid,Aztec User’s Guide: Version 2.0,Technical
Report, Sandia National Laboratories, Albuquerque, NM, 1998.

	1. INTRODUCTION
	FIG. 1.

	2. THEORY
	3. NUMERICAL METHODS
	TABLE I
	FIG. 2.

	4. ALGORITHMS FOR IMPROVED PERFORMANCE
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	TABLE II
	TABLE III
	FIG. 8.

	5. PARALLELIZATION
	FIG. 9.

	6. SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

